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From molecular spectroscopy of the Na2 purely long-
range 0−g state we determine the Na(3P) lifetime and mea-
sure the predicted but previously unobserved effect of re-
tardation in the interaction between two atoms. Our life-
time τ(P3/2)=16.230(16) ns helps to remove a longstanding
discrepancy between experiment and theory. Electron cloud
overlap is unimportant in the 0−g state (R > 55a0) and the
spectrum is calculated, ab initio, from atomic properties. By
measuring the binding energies the 120 MHz correction due
to retardation of the resonant dipole R−3 interaction is con-
firmed.
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When two identical alkali atoms, one in the nS ground
state and one in the optically excited nP state, are
brought together to form a molecule, one of the resulting
molecular potentials has a shallow well [1,2] at unusually
large internuclear separations R (≈70 Bohr radii, a0, for
Na2). For the lighter alkalis, atoms bound in this purely
long-range 0−g potential stay so far apart that the poten-
tial is completely determined by long-range forces and the
atomic spin orbit splitting, and can thus be calculated
with high precision. The dominant long-range interac-
tion is the R−3 resonant dipole interaction, the strength
of which is determined by the same atomic matrix ele-
ment as the nP radiative lifetime. Using photoassociation
spectroscopy of laser cooled atoms, we have measured ab-
solute binding energies of the Na2 0−g rovibrational levels
to ≈ 5 MHz. This data allows us to make the most ac-
curate determination yet of the Na(3P) atomic lifetime.
Moreover, the observed binding energies can only be ac-
counted for when the ≈100 MHz contribution due to the
retardation of the resonant dipole interaction is included.

A longstanding ≈1% discrepancy between theory and
experiment [4] for the Na(3P) lifetime has motivated
several recent experiments [5–7], including our own.
Molecular-spectroscopic atomic lifetime determinations
[3,5,8–10], such as reported here, offer a new approach
with sources of error different from the traditional di-
rect methods involved in this discrepancy. Other pre-
cision molecular-spectroscopic determinations have used
deeply bound electronic states [5,10]. In contrast, we
use the purely long-range 0−g state and avoid the uncer-
tainties associated with the potential in the short-range
chemical-binding region.

In 1948 Casimir and Polder showed [11] that the finite
propagation speed of light modifies the long-range forces
between atoms. In particular they showed that the sec-
ond order interaction that leads to the R−6 van der Waals
potential between two ground state atoms becomes R−7

at large R. Although there has been no experimental con-
firmation of the effect between individual atoms, the cor-
responding retarded interactions between two atomically
flat mica surfaces [12], a thin film of liquid helium and a
surface [13], and between an atom and surfaces [14] have
been measured quantitatively. Modification of the He
Rydberg levels by retardation of the electron-core inter-
action has also been observed [15]. In spite of much the-
oretical discussion, no effect of retardation on molecular
spectra has ever been reported. Retardation should alter
the binding energy of 4He2 by 10% [16], but this small
(+3 MHz) effect remains unobserved. Here we observe
retardation corrections of the first order, R−3, resonant
dipole interaction between identical ground and excited
state atoms, first calculated in Ref. [17]. Extending the
theory on the 0−g state to include retardation shows that
this state is ideal for observing retardation since it can
be cleanly separated from changes in the value of C3.

Detailed spectroscopy of the alkali dimer purely long-
range states has been made possible by the development
of photoassociation of laser cooled atoms [3,8,9]. Since
the atoms have small kinetic energy (E/kB ≈ 500 µK),
the Franck-Condon principle favors production of rovi-
brational levels near the molecular dissociation limit and
the resolution of the technique (kBT/h ≈ 10MHz) is com-
parable to the natural linewidth of the molecular lines in
question here (20 MHz). Because we start with free Na
atoms we directly measure the binding energies of the
molecular levels relative to the 3S + 3P asymptote.

Our analysis starts with the simple analytical model
introduced by Movre and Pichler (M-P) [1]. They showed
that the two 0−g potentials dissociating to 3S + 3P can
be described as a spin-orbit avoided crossing between two
Hund’s case (a) basis states: a repulsive 3Π0g potential
which goes as +C3/R

3 and an attractive 3Σ0g potential
which goes as −2C3/R

3. The two adiabatic 0−g potentials
are found by diagonalizing the potential matrix:
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where ∆ is the atomic spin-orbit splitting (∆=515.520
GHz for Na) and the zero of energy is the S + P3/2

asymptote. The upper 0−g potential has a shallow well
and is shown in Figure 1a. The well depth is ∆/9,

FIG. 1. a) The solid curve is the 0−g potential, in the M-P
approximation, of Eq. (1) as a function of internuclear sepa-
ration R. The dotted curve is the R-dependent correction to
the 0−g potential (magnified ×100) due to the retardation of
the resonant dipole interaction. b) Mixing of the parent Σ
and Π states of the 0−g potential as a function of R.

independent of C3, and the potential minimum is at
Re = (9C3/2∆)1/3 ≈ 71 a0 for Na2. The 0−g state is
an R-dependent mixture of the Hund’s case (a) states,
|0−g ,R〉 = bΠ(R)|Π〉+ bΣ(R)|Σ〉, as shown in Fig. 1b.

The retardation of the resonant dipole interaction de-
pends on the relative orientation of the atomic dipoles
and is thus different for Σ and Π states [17]. The charac-
teristic distance scale λ− = λ/2π = 1772 a0 for Na is set
by the 3S → 3P wavelength. Retardation is introduced
into Eq. (1) by replacing C3 by C3(1 + fΣ/Π(R)) [17],
where, to lowest-order in R/λ−, the corrections for the 3Σ
and 3Π states are fΣ(R) = −fΠ(R) = (R/λ−)2/2. The
resulting change in the 0−g potential is shown in Figure
1a. At Re, where the 0−g state is 2/3 3Πg character and
1/3 3Σg character, retardation increases the well depth
by (4/27)∆(Re/λ

−)2 = 123 MHz for Na2. Since the dom-
inant effect of retardation is to increase the well depth,

TABLE I. Binding energies of the 0−g state. v is the vibrational quantum number. EMP
v + E0 gives the energies (all energies

are given in GHz) from the Movre-Pichler model of Eq. (1) using C3 = 6.219 a.u.. The M-P model dissociates to the hyperfine
barycenter of the 3S + 3P asymptotes. Our energies are referenced to the S(F=2) + P3/2(F=3) hyperfine component (E0 =
0.7071 GHz in Eq. (2)). Columns 3-7 give the perturbation estimates of the terms in Eq. (2). Ev J=2 sums the columns 2-6 plus
6Bv, to get the energy of the J=2 state. The experimental J=2 and J=4 line positions are given in columns 10 and 11. The
column labeled ”theory” gives the energies from the diagonalization of the full Hamiltonian, as discussed in the text. Finally,
the shifts caused by a +5% change in CΣ

6 and CΠ
6 , and a +0.5% change in C3 are given.

v EMP
v + E0 εretv εdisp

v εna
v εj

2

v Bv Ev J=2 theory J=2 exp. J=2 exp. J=4 +5% C6 +0.5% C3

0 -54.299 -0.121 -0.158 0.026 0.162 0.0303 -54.210 -54.207(3) -54.208(5) -53.786(5) -0.008 -0.006
1 -47.437 -0.119 -0.145 0.022 0.152 0.0285 -47.356 -47.352(4) -47.351(5) -46.951(5) -0.007 -0.016
2 -41.243 -0.116 -0.132 0.019 0.143 0.0266 -41.170 -41.165(5) -41.164(5) -40.790(5) -0.007 -0.024
3 -35.682 -0.113 -0.119 0.016 0.134 0.0248 -35.616 -35.610(6) -35.610(5) -35.261(5) -0.006 -0.031
4 -30.716 -0.110 -0.107 0.014 0.124 0.0230 -30.657 -30.649(7) -30.652(5) -30.329(5) -0.005 -0.035
5 -26.306 -0.106 -0.095 0.012 0.115 0.0212 -26.253 -26.243(9) -26.245(5) -25.945(5) -0.005 -0.038
6 -22.411 -0.103 -0.084 0.010 0.106 0.0195 -22.365 -22.353(10) -22.353(5) -22.074(5) -0.004 -0.040

measurements of the binding energies of low-lying vibra-
tional levels are sensitive to retardation and relatively
insensitive to the value of C3. In contrast, the vibra-
tional spacing is sensitive to the value of C3 and only
slightly affected by retardation.

To measure the effect of retardation, we need to un-
derstand all other effects that might be of similar mag-
nitude. We present a perturbation theory calculation
starting from the two state M-P model. We can write
the total rovibrational energy as

EvJ = EMP
v + E0+ BvJ(J+1) + εretv + εdisp

v + εna
v + εj

2

v (2)

where EMP
v is the energy of the vibrational level v of the

adiabatic 0−g potential shown in Fig. 1a; E0 sets the zero
of energy; Bv is the rotational constant 〈1/2µR2〉 (µ is
the reduced mass); and the εxv are the expectation values
for the retardation correction (ret), dispersion interaction
(disp), diagonal nonadiabatic corrections (na), and the
J=0 rotational energy (j2), as described below.

Table 1 gives the results of the perturbation calcula-
tion, using a value of C3 discussed below. Calculation of
the εxv terms requires knowledge of the adiabatic vibra-
tional wavefunction Ψv(R) and the R-dependent Σ − Π
mixing. For example, the dispersion term is:

εdisp
v = 〈Ψv|b2

Π(R){CΠ
6 /R

6 + CΠ
8 /R

8}
+ b2

Σ(R){CΣ
6 /R

6 + CΣ
8 /R

8}|Ψv〉. (3)

We use the dispersion coefficients of Ref. [18] and find
the C8 contribution to εdisp

v is < 3%. The retardation
term is calculated using the full expression of Ref. [17].
It agrees well with the simple estimate given below Eq.
(1) for v=0.

The diagonal non-adiabatic correction is due to the
breakdown of the Born-Oppenheimer (fixed-nuclei) ap-
proximation as the potential changes character from Σ
to Π [19], and arises because the kinetic energy opera-
tor is not diagonal in the adiabatic |0−g ,R〉 basis, which

diagonalizes Eq. (1). εj
2

v is the mechanical rotational en-
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ergy of the total angular momentum J=0 state. Because
the constituent atoms have internal angular momentum,
the J=0 state of the molecule has non-zero mechanical
rotation: ~J = ~̀ + ~j where ~j = ~ja + ~jb, is the sum
of the total angular momenta of the individual atoms.
Thus the J=0 feature is a superposition of `-states and
its mechanical rotational energy can be evaluated from
〈j2/2µR2〉(= 〈`2/2µR2〉) using the known atomic compo-
sition of the Σ and Π basis states.

For comparison to the experimental data, we have also
done a nonperturbative calculation [20], that includes the
rotational (Coriolis) coupling and hyperfine interactions
that mix the 0−g states with other nearby states. We
start from the full Hamiltonian for all states correlating
to 3S + 3P and include the terms discussed above plus
an asymptotic approximation for the hyperfine interac-
tion, the exact mechanical rotation operator, and a spin-
spin magnetic dipole term. At R ≈ 35 a0 the long-range
potentials are fitted smoothly onto the ab initio poten-
tials of [21]. We numerically calculate the rovibrational-
hyperfine eigenvalues of this Hamiltonian. Uncertainties
in the ab initio potentials have no effect on the 0−g level
positions: replacing them with a hard wall at 30 a0 gives
no significant shift(< 1 MHz).

The experimental signals are largest for the J=2 fea-
ture of each vibrational level. This feature consists of 8
hyperfine sublevels with a spread of 5 MHz for v=0, ris-
ing to 22 MHz for v=6. Experimentally we do not resolve
the hyperfine structure for these vibrational levels and,
in the absence of a theoretical treatment of the hyperfine
transition strengths, the theoretical energies reported in
Table 1 are taken as the center of the spread of hyperfine
lines and assigned an uncertainty of half of this spread.

We use a Zeeman slowed atomic beam to continuously
feed Na atoms into a ”dark spot” magneto-optical trap
(MOT) [3]. This puts most of the atoms in the 3S(F=1)
state. As shown in the inset to Figure 2 we produce and
detect 0−g molecules by a two step photoassociative ion-
ization process [8,22]. This technique has a higher signal-
to-noise ratio than single-frequency trap loss techniques.
Moreover, the trap loss technique shows no v=0 and 1
features because of the small vibrational kinetic energy
of these states.

To obtain the rotational progression for a single vibra-
tional state the photoassociating laser is scanned over≈ 2
GHz while the ionizing laser is fixed. The total energy of
the two photons is typically >∼ 3 GHz above the ionization
threshold [8,22]. Na+

2 ions are detected with a channel
electron multiplier. Every ≈ 10µsec we switch between a
trapping phase with only the MOT lasers present, and a
probe phase with only the photoassociating and ionizing
lasers present. A counter is gated to receive only ions
produced during the probe phase. The ionizing laser is
at a frequency some tens of GHz above the atomic reso-
nance, so that no ion signal is produced in the absence of
the photoassociating laser. The two probe laser powers

FIG. 2. Ion signal versus photoassociating laser frequency
for v=0 of the 0−g state. The solid curve is a fit of an s +
d-wave Wigner-law lineshape of Ref. [23] to the respective
peaks using kBT/h = 9 MHz and γ = 22 MHz. The arrow
indicates the positions of the resonances. The inset shows
the two-step photoassociative ionization procedure. The first
photon has a variable frequency and produces a bound ex-
cited molecule from cold colliding atoms. The second photon,
with fixed frequency, excites the molecule to a continuum of
autoionizing states [8,22]. The frequency zero is a reference
etalon fringe at 16971.6462 cm−1.

are set at a level where ac Stark shifts and power broad-
ening of the lines are insignificant; consequently the trap
loss is never more than ≈ 3%. Figure 2 shows the spec-
trum of the v=0 state.

Our spectra are calibrated by a 0.3 GHz free spectral
range confocal etalon, locked to the saturated absorption
spectrum of Na. For each data set we measure the lock
point with respect to the atomic S(F=1) → P3/2(F=2)
transition in the cold atom sample.

The peaks of spectral lines observed in photoassocia-
tion spectroscopy are not centered on the transition but
are offset to the red by an energy of order kBT [23]. The
temperature and the selection rules for the 0−g state [20]
dictate that the J=2 lines will be predominantly due to
the s- and d-wave channels (for v > 0 only the s-wave
is significant) while the J=4 lines are due to the d-wave
channel. To extract the experimental line positions given
in Table 1, we compare the data to a calculated lineshape
assuming a simple thermally-averaged Wigner threshold
law [23]. We fit the data to a single threshold with a com-
mon kBT/h ≈ 9 MHz and a variable linewidth γv, which
is greater than the molecular natural linewidth of 20 MHz
in order to account for unresolved hyperfine structure.
The quoted experimental uncertainties are dominated by
determination of the etalon lock point and the tempera-
ture, which are common to all lines.

Table 1 shows that the measured binding energies are
well reproduced by the calculations. The agreement is
better than the uncertainties because of the common-
ality of sources of uncertainties. If retardation were to
be neglected, the data could be fit only by making an
unrealistically large change in C6 (≈ +75%) and a si-
multaneous change in C3 (+0.4%). The calculated C6
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coefficients, on the other hand, are expected to be accu-
rate to ≈ 5% [18]. With retardation properly included we
extract a value of C3 = 4.018(4) zJ·nm3 (6.219(6) a.u.),
where the numbers in parentheses are combined stan-
dard uncertainties (estimated standard deviations) from
a numerical fit to the J=2 data, adding the experimental
and theoretical uncertainties for each vibrational level in
quadrature. The CΣ

6 and CΠ
6 coefficients were determined

by the fit (with the constant ratio from Ref. [18]) in the fit
and were found to be consistent with the values from Ref.
[18] to well within their 3.5% uncertainty from the fit. A
fit to the J=4 positions is consistent, but with slightly
larger uncertainties. Since in atomic units C3 is equal to
the square of the transition dipole matrix element and
hence, inversely proportional to the atomic Na(3P) state
lifetime, we can convert from C3 to atomic lifetime to
find τ(P3/2) = 16.230(16) ns and τ(P1/2) = 16.280(16)
ns. We have used the fact that the difference between the
P1/2 and P3/2 dipole matrix elements is negligible at this
level of accuracy [24]. Our values agree with other new
measurements (converted to τ(P3/2)): decay in a fast
atomic beam (16.254(22) ns) [6], a direct measurement
of the atomic linewidth (16.237(35) ns) [7], and molecu-
lar spectroscopy of the A state of Na2 (16.222(53) ns) [5]
and also with recent theory (16.236 ns) [4], and (16.253
ns) [25]. The agreement between these techniques sug-
gests that the systematic errors in previous fast beam
measurements [26] are now eliminated.

We have estimated the size of the retardation contribu-
tion to the well depth for the 0−g purely long-range states
in the other alkali dimers: Rb2, 210 MHz (at Re = 34
a0); K2, 134 MHz (at 54 a0); Li2, 24 MHz (at 255 a0).
For Rb2, the current uncertainties in C6 and C8 make
the effect difficult to detect. For Cs2 we expect chemical
binding effects to be large.

Using photoassociation spectroscopy, we have mea-
sured the binding energies of rovibrational levels in the
0−g purely long-range potential in Na2 and shown that
we can understand these energies in detail, including the
shifts due to retardation of the resonant dipole inter-
action. Using the C6’s with 5% uncertainty from Ref.
[18], we have measured the v=0 retardation shift to be
122(10) MHz, in good agreement with the predicted shift
of 121 MHz. We have also determined the Na(3P) state
lifetimes to 0.1%. Calculations of the hyperfine transi-
tion strengths, which depend on the details of the ground
state potential, will allow us to reduce the uncertainties
and put tighter constraints on the lifetime.

Since the submission of this manuscript we have
learned of another precision molecular-spectroscopic
atomic lifetime measurement (using Li) in which retar-
dation effects can be observed [27].
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